A Volcanic Aura: Observing the Magnitude and Impact of Global SO₂ Emissions

S.A. Carn¹, V. Fioletov², C. McLinden², N.A. Krotkov³, C. Li³, S. Mairet¹ 1. Michigan Tech; 2. Environment & Climate Change Canada; 3. NASA GSFC

UV satellite remote sensing of volcanic SO₂

1978-2005
Total Ozone Mapping
Spectrometer (TOMS)

1995-2003
Global Ozone Monitoring
Experiment (GOME)

2004-Ozone Monitoring Instrument (OMI)

2006-GOME-2

2012- & 2017-Ozone Mapping and Profiler Suite (OMPS) 2015-DSCOVR/ EPIC

2018-Sentinel 5P TROPOMI

Explosive volcanic SO₂ emissions (1978 – present)

New global volcanic SO₂ emissions inventory

A time-averaged inventory of subaerial volcanic sulfur emissions

[Andres & Kasgnoc, JGR, 1998]

R.J. Andres and A.D. Kasgnoc

Institute of Northern Engineering, University of Alaska Fairbanks

- Volcanic degassing 'source term' in atmospheric chemistry and climate models
- Climate impact of tropospheric volcanic emissions (sulfate aerosol)
- Estimation of global fluxes of other volcanic gases (e.g., CO₂) and trace metals (e.g., Hg)

SCIENTIFIC REPORTS

OPEN A decade of global volcanic SO₂ emissions measured from space [Carn et al., 2017] [Fioletov et al., 2016]

S. A. Carn¹, V. E. Fioletov², C. A. McLinden², C. Li^{3,4} & N. A. Krotkov⁴

Volcanic SO₂ sources in Indonesia

- Globally, 90-100 volcanic SO₂ sources quantified (many for the first time)
- Total SO₂ flux of 23+/-2 Tg/yr (~63 kt/day)
- Volcanic emissions dominate in many regions

Fioletov et al., 2016 Carn et al., 2017

Improved estimates of volcanic CO₂ emissions

- CO₂/SO₂ ratios measured at many of the strongest SO₂ sources
- ~50% of SO₂ sources still lack CO₂ data efforts underway to address this

Trends in tropospheric volcanic SO₂ emissions

- Aura has captured volcanoes at various stages in their 'life-cycles'
- ~30% of volcanic SO₂ sources show significant +/- trends in emissions
- ~80% of sources also erupted during the decade

Trends in SO₂ emissions at erupting volcanoes

Identifying 'pre-eruptive' SO₂ emissions

Eruption of Ulawun (Papua New Guinea) - June 26, 2019

NASA aims to sample volcanic eruption clouds – need advance warning

Population exposure to volcanic SO₂

- Satellite & census data permit estimation of population exposure to SO₂ pollution (e.g., *Li et al.*, 2017)
- Exposure to volcanic SO₂ (and other volcanic emissions) is not well constrained and can be a significant, chronic hazard
- Goal: methodology for producing first volcanic gas 'hazard maps'

Volcanic air pollution at Masaya (Nicaragua)

Summary

